Copied to
clipboard

G = C42.7C8order 128 = 27

4th non-split extension by C42 of C8 acting via C8/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.7C8, M5(2):4C4, C23.26M4(2), C4.3(C4xC8), (C2xC8).10C8, C4.24(C4:C8), C8.33(C4:C4), (C2xC8).56Q8, (C2xC8).373D4, (C2xC4).53C42, (C2xC42).42C4, (C22xC8).24C4, C2.3(C8.C8), C22.19(C4:C8), C4.20(C22:C8), C8.55(C22:C4), (C2xM5(2)).7C2, (C2xC4).69M4(2), C22.3(C8:C4), C22.23(C22:C8), (C22xC8).571C22, C4.26(C2.C42), C2.14(C22.7C42), (C2xC4xC8).57C2, (C2xC4).74(C2xC8), (C2xC8).188(C2xC4), (C2xC4).159(C4:C4), (C22xC4).467(C2xC4), (C2xC4).347(C22:C4), SmallGroup(128,108)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C42.7C8
C1C2C4C2xC4C2xC8C22xC8C2xC4xC8 — C42.7C8
C1C2C4 — C42.7C8
C1C2xC8C22xC8 — C42.7C8
C1C2C2C2C2C4C4C22xC8 — C42.7C8

Generators and relations for C42.7C8
 G = < a,b,c | a4=b4=1, c8=b2, cac-1=ab=ba, cbc-1=b-1 >

Subgroups: 104 in 74 conjugacy classes, 44 normal (24 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, C23, C16, C42, C42, C2xC8, C2xC8, C2xC8, C22xC4, C22xC4, C4xC8, C2xC16, M5(2), M5(2), C2xC42, C22xC8, C2xC4xC8, C2xM5(2), C42.7C8
Quotients: C1, C2, C4, C22, C8, C2xC4, D4, Q8, C42, C22:C4, C4:C4, C2xC8, M4(2), C2.C42, C4xC8, C8:C4, C22:C8, C4:C8, C22.7C42, C8.C8, C42.7C8

Smallest permutation representation of C42.7C8
On 32 points
Generators in S32
(1 13 9 5)(2 25)(3 15 11 7)(4 27)(6 29)(8 31)(10 17)(12 19)(14 21)(16 23)(18 30 26 22)(20 32 28 24)
(1 28 9 20)(2 21 10 29)(3 30 11 22)(4 23 12 31)(5 32 13 24)(6 25 14 17)(7 18 15 26)(8 27 16 19)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)

G:=sub<Sym(32)| (1,13,9,5)(2,25)(3,15,11,7)(4,27)(6,29)(8,31)(10,17)(12,19)(14,21)(16,23)(18,30,26,22)(20,32,28,24), (1,28,9,20)(2,21,10,29)(3,30,11,22)(4,23,12,31)(5,32,13,24)(6,25,14,17)(7,18,15,26)(8,27,16,19), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)>;

G:=Group( (1,13,9,5)(2,25)(3,15,11,7)(4,27)(6,29)(8,31)(10,17)(12,19)(14,21)(16,23)(18,30,26,22)(20,32,28,24), (1,28,9,20)(2,21,10,29)(3,30,11,22)(4,23,12,31)(5,32,13,24)(6,25,14,17)(7,18,15,26)(8,27,16,19), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32) );

G=PermutationGroup([[(1,13,9,5),(2,25),(3,15,11,7),(4,27),(6,29),(8,31),(10,17),(12,19),(14,21),(16,23),(18,30,26,22),(20,32,28,24)], [(1,28,9,20),(2,21,10,29),(3,30,11,22),(4,23,12,31),(5,32,13,24),(6,25,14,17),(7,18,15,26),(8,27,16,19)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N8A···8H8I···8T16A···16P
order12222244444···48···88···816···16
size11112211112···21···12···24···4

56 irreducible representations

dim1111111122222
type++++-
imageC1C2C2C4C4C4C8C8D4Q8M4(2)M4(2)C8.C8
kernelC42.7C8C2xC4xC8C2xM5(2)M5(2)C2xC42C22xC8C42C2xC8C2xC8C2xC8C2xC4C23C2
# reps11282288312216

Matrix representation of C42.7C8 in GL3(F17) generated by

100
0130
001
,
100
040
0013
,
1500
001
0150
G:=sub<GL(3,GF(17))| [1,0,0,0,13,0,0,0,1],[1,0,0,0,4,0,0,0,13],[15,0,0,0,0,15,0,1,0] >;

C42.7C8 in GAP, Magma, Sage, TeX

C_4^2._7C_8
% in TeX

G:=Group("C4^2.7C8");
// GroupNames label

G:=SmallGroup(128,108);
// by ID

G=gap.SmallGroup(128,108);
# by ID

G:=PCGroup([7,-2,2,-2,2,2,-2,-2,56,85,120,1430,352,136,2804,124]);
// Polycyclic

G:=Group<a,b,c|a^4=b^4=1,c^8=b^2,c*a*c^-1=a*b=b*a,c*b*c^-1=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<